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Within the framework of the nonlinear model of diffusion, a method of determining 
the effective cementing of porous materials by means of a numerical computer ex- 
periment is proposed. 

The technology of cementing metalloceramic parts is based on high-temperature diffusional 
processes. Parts of this kind are made from porous materials and it is notable that the dif- 
fusion rate in the latter exceeds the diffusion rate in continuous materials [I]. One expla- 
nation of this effect is that the presence of pores filled by gas with a significantly larger 
diffusion coefficient [2] facilitates the penetration of sorbent not only from the external 
but also from the "internal" surface of the medium forming the part. 

To control the technological process of cementing, it is very useful to estimate the 
diffusion rate as a function of the degree of porosity of the material. 

The mathematical experiment described below solves this problem within the framework of 
a characteristic mathematical model and leads to the plotting of nomograms which may be used 
to estimate the diffusion rate in cementing. 

I. Since the porous medium is some microstructure, the problem may be considered within 
the framework of a plane model, representing the pores as rectilinear channels (Fig. I) and 
assuming a periodic pore distribution. Since Dpore ~Dcont , it is assumed that the sorbent 
instantaneously fills the pores, so that the process is described by a two-dimensional dif- 
fusion problem. 

The rate of heat propagation in the cells considerably exceeds the diffusion rate. There- 
fore the temperature of the medium reaches a specified constant level in a short time. The 
law of temperature variation is insignificant here and is taken to be linear. Then, the next 
problem is to determine the concentration c(x, z, t) of the sorbent in the cell enclosed with- 
in the bold line in Fig. I 
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c(x, z, 0)=c*, Clz=0=c, cl==0=c, <I> 
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where  ~ i s  t he  c a r b o n  p o t e n t i a l  o f  t h e  e x t e r n a l  medium; c* i s  t h e  c a r b o n  c e n t e r  b e f o r e  t h e  
onset of the cementing process; a and [ are the cell boundaries; ~ is the total heating time. 

Below, the diffusion coefficient D(c) in the continuous material is taken to be the dif- 

fusion c o e f f i c i e n t  o f  c a r b o n  in  ~ Fe:  D(c)  = ( 0 . 0 4 + c - 0 . 0 8 ) e x p  - - 1 . 9 8 7 ( T + 2 7 3 )  cm 3 / s e c  [ 3 ] ,  

t h e r e b y  t a k i n g  a c c o u n t  of  t he  s i g n i f i c a n t  c o n c e n t r a t i o n  and t e m p e r a t u r e  d e p e n d e n c e  of  D f o r  
t he  c e m e n t i n g  p r o c e s s .  
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Fig. I. Two-dimensional periodic model of cell and pore distribution. 

Fig. 2. Concentration field (t = 7.4 h; a = Z = 2 mm); c, %. 

Fig. 3. Lines of the concentration-field levels (the figures on the curves give values of the 
concentration c = s; t = 7.4 h). 

The problem in Eq. (I) is nonlinear, and it is solved in the grid {xi, z k} using an iter- 
ative process within the framework of a longitudinal--transverse difference scheme [4] (im- 
plicit variable-direction method)�9 

Correspondingly, at each moment of time, from the specified sequence {t~}, the grid func- 
�9 3 

tion c~ I approximating solution of the problem in Eq. (I) is determined by the equations 

C1+1/2 - -  C l _ A x c i + l / 2  -{- A z c i  ' 

0.5~ (2) 

C]+l - -  C]+1/2 
= A z c i + l  + A x c i + l / 2  

0.5~ 

where  t r a n s i t i o n  f o r m  t i m e  l a y e r  t j  t o  t j +  1 ( j  = O, 1, 2 , . . . , M ,  to = O, t M = ~) i s  a c c o m -  
p l i s h e d  in two stages with a step of 0.5T (for the sake of brevity, the subscripts i, k on 

Cik are omitted). 

The fitting method is used to solve them for each iteration s [5]. 

Computer calculations allow an idea of the dynamics of the process to be obtained as a 
function of the cell dimensions of the structure. In particular, the carbon concentration 
field at time t = 7.4 h is shown in Fig. 2 in an isometric projection for the parameters: 

= ~ = 2 ram; c* = 0.2%; c = 1.2%; t = I0 h; T varies linearly from 20 to 920~ at t ~ 24 min 
A 

and T = 920~ at t > 24 min. The parameters c*, c, t, and T are common to all the illustra- 
tions below. Note that the diffusion coefficient may also be considered as a functional 
parameter of the problem, since an autonomous procedure is calculated in its solution. 

2. A homographic description of the result similar to that in [6, 7] is very useful 
in estimating the cementing effect with the aim of controlling this process. For the periodic 
structure assumed, the pore density is evidently characterized by the linear cell dimension 
along the x axis (Fig. I). 

The characteristic adopted for the effect is the layer thickness (measuring from the 
surface z = 0) h* saturated by sorbent of concentration no less than a specified value e, %. 

Using a computer, the analysis of the results accumulated in calculating the function 
c(x, z, t) may be organized according to the following scheme. 

A. The intersection of the plane of specified carbon concentration c = ~ with the con- 
centration surface c(x, z, tfi x) on the plane (x, z) is estimated: for example, in 
Fig. 2, these are the points Px(E) and Pz(~). The set of such points {Px(S)} and 
{Pz(~)} for each value of ~ is shown by a nomogram in Fig. 3. This reduces to 
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Fig. 4. Nomograms of the heating time t*, h, to the 
specified carbon concentration e at a fixed depth when 

= 2 mm (the figures on the curves are values of h*); 
= 0.4% (a), u.8 (b), 1.0 (c). 

numerical solution of the equation c(x, z, t) = ~ on a computer, with specified tfi x. 
As a result of subsequent interpolation, the curves of z = ftfix(x) in Fig. 3 are 
obtained. 

B. From the curve of the concentration c(~, h*, t) as a function of the time at several 
fixed depths h* when x = ~, the time t* corresponding to a specified concentration 

is sought. To this end, the equation c(~, z, t) is solved numerically on a com- 
puter at fixed z = h*, and subsequent interpolation leads to curves of t=~h~ (a), 
the nomograms of the cementing process in Fig. 4. 

On the figures corresponding to different e, curves of the cementing time as a function 
of the cell dimensions are shown; each curve corresponds to a definite depth h* of interest 
for technology. The common point on the nomogram curves corresponds to the onset of the con- 
stant temperature 920~ after a time t = 24 min. 

Note that the cementing rate actually increases with increase in pore density which 
confirms the initial hypothesis regarding the influence of porosity. It is evident in par- 
ticular (Fig. 4b) that the concentration of 0.8% carbon at a depth of 0.25 mm with a cell 
"dimensions" ~ = 2 mm, o = I mm (Fig. I) may be reached after 1.6 h. 

The results obtained may facilitate the solution of the problem of energy economy in 
the corresponding technological process. 
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